Earn upto Rs. 9,000 pm checking Emails. Join now!

Enter your email address:

Delivered by FeedBurner

Saturday, November 24, 2007

CBSE +1 Math

COURSE STRUCTURE
Class XI
One Paper Three Hours Max Marks. 100
Units Marks
I. SETS AND FUNCTIONS 29
II. ALGEBRA 37
III. COORDINATE GEOMETRY 13
IV. CALCULUS 06
V. MATHEMATICAL REASONING 03
VI. STATISTICS AND PROBABILITY 12 100

UNIT-I: SETS AND FUNCTIONS
1. Sets : (12) Periods
Sets and their representations. Empty set. Finite & Infinite sets. Equal sets.Subsets. Subsets
of the set of real numbers especially intervals (with notations). Power set. Universal set.
Venn diagrams. Union and Intersection of sets. Difference of sets. Complement of a set.
2. Relations & Functions: (14) Periods
Ordered pairs, Cartesian product of sets. Number of elements in the cartesian product of
two finite sets. Cartesian product of the reals with itself (upto R x R x R). Definition of
relation, pictorial diagrams, domain. codomain and range of a relation. Function as a
special kind of relation from one set to another. Pictorial representation of a
function, domain, co-domain & range of a function. Real valued function of the real variable,
domain and range of these functions, constant, identity, polynomial, rational, modulus,
signum and greatest integer functions with their graphs. Sum, difference, product and
quotients of functions.
3. Trigonometric Functions: (18) Periods
Positive and negative angles. Measuring angles in radians & in degrees and conversion
from one measure to another. Definition of trigonometric functions with the help of
unit circle. Truth of the identity sin 2 x + cos 2 x=1, for all x. Signs of trigonometric
functions and sketch of their graphs. Expressing sin (x+y) and cos (x+y) in terms of
sinx, siny, cosx & cosy. Deducing the identities like the following:
Identities related to sin 2x, cos2x, tan 2x, sin3x, cos3x and tan3x. General solution of trigonometric
equations of the type sin.... = sin á , cos.... = cos á and tan.... = tan á .
UNIT-II: ALGEBRA
1. Principle of Mathematical Induction: (06) Periods
Processes of the proof by induction, motivating the application of the method by looking
at natural numbers as the least inductive subset of real numbers. The principle of
mathematical induction and simple applications.
2. Complex Numbers and Quadratic Equations: (10) Periods
Need for complex numbers, especially , to be motivated by inability to solve every
quadratic equation. Brief description of algebraic properties of complex numbers. Argand
plane and polar representation of complex numbers. Statement of Fundamental Theorem
of Algebra, solution of quadratic equations in the complex number system.
3. Linear Inequalities: (10) Periods
Linear inequalities. Algebraic solutions of linear inequalities in one variable and their
representation on the number line. Graphical solution of linear inequalities in two variables.
Solution of system of linear inequalities in two variables- graphically.
4. Permutations & Combinations: (12) Periods
Fundamental principle of counting. Factorial n. (n!)Permutations and combinations,
derivation of formulae and their connections, simple applications.
5. Binomial Theorem: (08) Periods
History, statement and proof of the binomial theorem for positive integral indices. Pascal's
triangle, General and middle term in binomial expansion, simple applications.
6. Sequence and Series: (10) Periods
Sequence and Series. Arithmetic progression (A. P.). arithmetic mean (A.M.) Geometric
progression (G.P.), general term of a G.P., sum of n terms of a G.P., geometric mean
(G.M.), relation between A.M. and G.M. Sum to n terms of the special series Ó n, Ó n 2 and
Ó n 3 .
UNIT-III: COORDINATE GEOMETRY
1. Straight Lines: (09) Periods
Brief recall of 2D from earlier classes. Slope of a line and angle between two lines. Various
forms of equations of a line: parallel to axes, point-slope form, slope-intercept form, two-point
form, intercepts form and normal form. General equation of a line. Distance of a
point from a line.
2. Conic Sections: (12) Periods
Sections of a cone: circle, ellipse, parabola, hyperbola, a point, a straight line and pair of
intersecting lines as a degenerated case of a conic section. Standard equations and simple
properties of parabola, ellipse and hyperbola. Standard equation of a circle.
3. Introduction to Three -dimensional Geometry (08) Periods
Coordinate axes and coordinate planes in three dimensions. Coordinates of a point.
Distance between two points and section formula.
UNIT-IV: CALCULUS
1. Limits and Derivatives: (18) Periods
Derivative introduced as rate of change both as that of distance function and geometrically,
intuitive idea of limit. Definition of derivative, relate it to slope of tangent of the curve,
derivative of sum, difference, product and quotient of functions. Derivatives of polynomial
and trigonometric functions.
UNIT-V: MATHEMATICAL REASONING
1. Mathematical Reasoning: (08) Periods
Mathematically acceptable statements. Connecting words/ phrases - consolidating the
understanding of "if and only if (necessary and sufficient) condition", "implies", "and/or",
"implied by", "and", "or", "there exists" and their use through variety of examples related to
real life and Mathematics. Validating the statements involving the connecting words-difference
between contradiction, converse and contrapositive.
UNIT-VI: STATISTICS & PROBABILITY
1. Statistics: (10) Periods
Measure of dispersion; mean deviation, variance and standard deviation of ungrouped/grouped
data. Analysis of frequency distributions with equal means but different variances.
2. Probability: (10) Periods
Random experiments: outcomes, sample spaces (set representation). Events: occurrence
of events, 'not', 'and' and 'or' events, exhaustive events, mutually exclusive events Axiomatic
(set theoretic) probability, connections with the theories of earlier classes. Probability of
an event, probability of 'not', 'and' & 'or' events.
 
Thanks

Total Pageviews